Utilizing redundancies in Qubit Hilbert Space to reduce entangling gate counts in the Unitary Vibrational Coupled-Cluster Method
We present a new method for state preparation using the Unitary Vibrational Coupled-Cluster (UVCC) technique. Our approach utilizes redundancies in the Hilbert space in the direct mapping of vibrational modes into qubits. By eliminating half of the qubit controls required in the Trotterized UVCC ansatz, our method achieves up to a 50% theoretical reduction in the entangling gate count compared to other methods and up to a 28% reduction compared practically useful approaches. This improvement enhances the fidelity of UVCC state preparation, enabling more efficient and earlier implementation of complex quantum vibrational structure calculations on near-term quantum devices. We experimentally demonstrate our method on Quantinuum's H1-1 quantum hardware, achieving significantly higher fidelities for 6- and 8-qubit systems compared to existing implementations. For fault-tolerant architectures, eliminating half of the control qubits in multi-controlled rotations incurs an additional Toffoli gate overhead elsewhere in the circuit. Thus, the overall performance gain depends on the specific decomposition method used for multi-controlled gates.
Preprint is available here.